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Schmitz/Hollinger

ABSTRACT

'A biodegradable copolymer of polylactide:polWglWcolide

CPLA:PGA) was combined with allogeneic decalcified freeze-dried

bone (OFOB) and implanted into IS mm diameter defects in the

calvaria of 26 New Zealand White rabbits. Similar defects were

created in the calvaria of another 26 rabbits. These animals

served as controls and did not receive copolymer implants.

Upon sacrifice, both the implants and the controls were

evaluated clinically, radiographically, and

histomorphometrically using a Zeiss Image Analysis System

(OsteoplanTM version 4.1). Both controls and implants were

evaluated in groups at k, 8, 12, 16, 20, and 24 weeks. When

compared with the control defects, the copolymer:EFDB composite

implants displayed a significantly greater volume of trabecular

bone Cp<0.02S). Two of the 15 mm diameter defects completely

healed at 8 weeks. No adverse host tissue responses were

observed histologically
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INTRODUCTION

Avulsive maxillofacial wounds present challenging problems

in reconstructive surgical management. These wounds often

present as irregularly-shaped discontinuity defects that require

some form of bone graft to restore continuity. Furthermore,

defects in the maxillofacial region often occur on broad, flat

regions of the skull and Face where soft tissue support and

facial esthetics are important requirements. A desirable repair

material should be osteogenic, easily adaptable at the time of

surgery, and rigid enough to support the muscles and soft

tissues of the face.

For the repair of large maxillofacial defects, preferences

are given to alloplastic materials, rib and iliac grafts, or

calvarial grafts. Bone grafts present special problems

including the need for a separate harvesting procedure, the

potential limitation of available donor bcre, and pcst-graft

resorption. The advantages and disadvantages of autogenous

grafts versus alloplastics have been reviewed by Wolfe[33].

The alpha-hydroxy polyesters, polylactide and

polyglWcolide, have been investigated for use as implant

materials in the repair of a variety of soft tissue and osseous

wounds. Implanted homopolymers and copolymers of polylactide

and polyglycolide have been used in a supportive role as suture

material, orbital floor replacements, dressings to facilitate

healing in tooth extraction sites, and as biodegradable bone

plates and screws[2, 3, 4, 5, 7, 233.

In the early 1960's, Urist discovered that consistent

.. .. mmmmi n
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ostmoinduction by demineralized bone matrix could be achieved bu

the control of time, temperature, and molar concentration of

HCI29]. Allogeneic decalcified bone implants subsequently,

have been used clinically for the correction of

craniomaxillofacial deformities and in the treatment of jaw

defects [8, 1S, 19]. It was the purpose of this study to

examine the osteogenic potential of a biodegradable

copolymerCPLA:PGA) combined with allogeneic decalcified

freeze-dried bone for craniofacial wound repair.

MATERIALS AND METHODS

Imolant Preoparation

A composite alloimplant was prepared by combining 50:50

polyCDL-lactide-co-glycolide) CPLA:PGA) with an inherent

viscosity of O.S2 with allogeneic decalcified Freeze-dried bone

(DFDB). Diaphyseal segments of long bones were removed from

donor animals (New Zealand White rabbits) and pulverized in the

cold (80 C)to a particle size of 150-590 micrometers. The

particles were defatted in 100% ethanol for four hours,

decalcified for 24 hrs in 0.6 N HCI at 40 C, rinsed in 0.1M PBS

and distilled water, and lyophilized. PLA:PGA copolymer Cl gm.)

was solubilized in chloroform, precipitated with methanol and

combined with DFDB CSOO mg.). The doughy composite was forced

into TeflonR molds and heat cured for 24 nrs. at 5S-48 C.

After sterilization with ethylene oxide at room temperature, the

implants were lWophilized for 84 hours at 50 millitorr to remove

ethylene oxide residuals. Scanning electron micrographs of the

cured implants revealed a polymer lattice interspersed with bone
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matrix particles (Fig.1).

Suoeru

FiftW-two, adult, male New Zealand white rabbits were

randomly selected and conditioned for two weeks prior to the

start of the experiment. Adult status was documented by

radiographic confirmation of epiphyseal plate closure. The

animals were anesthesized using a xylazine/ketamine technique

supplemented with 1.8 ml of 2% lidocaine hydrochloride with

1:100,000 epinephrine. The scalp hair was removed with a

depilating agent and the area over the calvaria was scrubbed

with ethyl alcohol and povidone iodine for five minutes. Before

surgery, 150,000 Units of FlocillinR were administered

intramuscularly in the left hind leg. Following attainment of a

suitable level of anesthesia, a semi-lunar incision was made in

the midline from the superior sagittal crest to the middle of

the nasal bone. The soft tissues were gently reflected

laterally and a 15 mm diameter craniotomy was created using a

trephine in a slow-speed dental handpiece CFig. 2a, 2b).

Copious irrigation with normal saline was used throughout the

procedure. Care was taken during the entire process to avoid

perforating the dura or the superior sagittal sinus. The

craniotomy was then irrigated with normal saline. Twenty-six of

the animals served as controls while the other twenty-six

animals received circular polymer composite implants (Fig. 3).

The periosteum was closed over all the defects and implants and

the tissues were closed in layers with 3-0 polyglycolic acid

suture. At 4, 8, 12, 16, 20, and 24i ueeks animals were
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euthanatized with an overdose of sodium pentothal, USP. The

defects and implants were retrieved along with surrounding host

bone and immediately fixed in 70% ethanol. Specimens were

removed from the fixative, placed dura-side down on Kodak

Ultraspeed Dental X-ray Film and radiographed at 90 KvP, 10 Ma,

0.4 seconds using a long-cone technique. Each radiograph was

developed in an automatic x-ray processor and printed using a

standard enlargement magnification. Specimens were embedded in

polymethylmethacrylate, sectioned at 6 micrometers and stained

with a modified Masson-Goldner trichrome stain. Specimens were

analyzed using a Zeiss Image Analysis System (OsteoplanTMversion

4.1). A random sampling of six fields for each specimen was

measured. The bony fill per specimen was assessed by

quantitating total trabecular bony volume (inclusive of

calcified trabeculae and osteoid).

RESULTS

Gross Examination

Control sites

The control defects attempted to heal in a centripetal

fashion. Although none of the 15 mm diameter defects healed in

24 weeks, healing was characterized by varying amounts of

fibrous tissue repair (Fig. 5).

Imolant sites

4 weeks: Extensive Fibrous encapsulation of the

implants was noted without significant degradation of the

polymer (Fig. 5). The implants appeared to have swollen to the

point of protruding out of the defect. The wound margins could
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still be identified.

8 to 16 weeks: Uarying amounts of osteosclerotic

rimming were present at the wound margins with a reddish-brown

soft tissue present within the center of the defect (Fig. 6).

In many specimens the central area of the defect still contained

areas of residual polymer.

20 to 24 weeks: Organized soft tissue elements and

residual polymer were apparent. In implant sites which did not

heal, dark red soft tissue was present in the center of the

wound.

The implants were well tolerated by all the experimental

animals. No adverse soft tissue reactions developed in any of

the surgical sites. At necropsy, two of the implant-treated

wounds healed completely at eight weeks. The copolymer implants

were not completely degraded in all instances at 24 weeks,

however,. tb;s did not appear to :.-terf'ere with bone Formation.

Radioaraohic Examination

Control sites

Control wounds demonstrated a centripetal pattern of bony

repair characterized by Finger-like extensions and occasional

islands of osseous repair. None of the control wounds displayed

radiographic evidence of osseous bridging at 24 weeks (Fig. 7).

Imolant sites

The implants also demonstrated a centripetal pattern of

bony repair. Two of the implants showed trabecular patterns

indicative of complete repair at B weeks CFig. B). Coalescing

# • m ,mmm
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bony elements were present as irregular fingers and isolated

areas of speckled radiopacities.

Histolooic Examination

Control sites

4 weeks: Isolated islands of trabecular bone were

present within the defect surrounded by fibrous connective

tissue. Wound margins were not eburnated at this time.

8 to 12 weeks: Isolated areas oF reparative elements

were still present with apparent eburnation of the bony margins.

The osseous islands appeared to increase in size with time.

Many of these islands contained hematopoietic elements.

16 to 24 weeks: Islands of reparative elements became

more numerous and incomplete attempts at osseous bridging were

visible (Fig. 93).

Implant sites

L weeks: Isolated islands of bcng trabeculae were

present throughout the defects. In the healing defects,

widespread tessellation and rimming of osteoblasts was pesent

CFig. lOa, lOb). A minimal inflammatory cell infiltrate was

present in areas between the demineralized bone particles.

8 to 12 weeks: Residual polymer was still present in

the experimental defects. In three specimens, complete osseous

bridging was observed (Fig. 11).

16 to 24 weeks: In areas devoid of healing, bone

particles were occasionally present and appeared to be enveloped

by fibrous connective tissue. Large islands oF coalescing

trabeculae were observed with areas oF residual demineralized

II
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bone surrounded by a prominent round cell infiltrate. Residual

copolymer was present in many implant-treated wounds at 24

weeks.

Histomorohometric Analusis

The mean pooled trabecular bony volume from the

experimental and control data was analyzed using an unpaired

Student's t-test (Table I). There was a significant difference

in the pooled mean trabecular bony volume between the implant

and the control sites (p<O.025).

dQ.
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DISCUSSION

Biodegradable polymers previously have been investigated

For use in soft and hard tissue repair, in the internal

fixation of Fractures, and as intraosseous bone repair

materials. A promising use for these polymers has been as

carriers for osteogenic agents.

Nelson et al. were the First to assess the osteogenic

potential of PLA/PGA copolymer implants in the repair of bony

wounds E213. The copolymer implants resulted in gradual

healing of the bony wounds from the peripheries which

progressed centrally. The implants were extremely tissue

tolerant with little inflammatory or Foreign body reaction.

Olson et al. compared the tissue response of PLA with that of

GelfoamR and SurgicelR in healing extraction sites [233. PLA

was observed in the wounds after three months although its

retention did not appear to interfere with new bone Ecrmaticn.

PLA demonstrated less inflammatory reaction than either

GelfoamR or SurgicelR. Brekke et al. investigated the

influence of PLA mesh on the incidence of localized osteitis

[2]. They concluded that the use of PLA mesh substantially

reduced the incidence of mandibular third molar "wound failure"

and that the PLA demonstrated a hemostatic effect. Hollinger

evaluated the osteogenic potential of PLA:PGA copolymer

implants in osseous wounds E13. He showed that although the

implant material was still present at 42 days, it displayed an

accelerated rate of healing as compared to control bony wounds.

Hollinger was the first to use PLA:PGA as a carrier For a
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calcification initiator, diposphoinositide-lysozyme (OPI-L)

[123. When DPI-L was combined with a PLA-PGA copolymer for the

repair of endochondral wounds in rats and in the repair of

mandibular discontinuity defects in dogs, the implants

displayed an accelerated rate of repair as compared to the

control wounds 12, 13). Higashi et al. used

PLA-hydroxyapatite (PLA-HA) composites to repair endochondral

wounds in rats 110]. The FLA was observed to be rapidly

resorbed and replaced by new bone which formed in direct

contact with the HA.

Biocompatabilitu

f There are no reports in the literature describing adverse

4 systemic responses to polyester sutures or bone repair

materials. Furthermore, the high degree of biocompatibility oF

PLA:PGA copolymers as bone implants has been described [l, 11,

183. This was further supported by the high degree of tissue

tolerance seen with the demineralized bone/copolymer composite.

A PLA-HA composite was shown to become drastically acidic in

vitro, reaching a pH of 3.1 in one week and remaining at that

level for five weeks [10]. This localized pH drop may account

for the lack of consistent healing pattern observed in many of

the copolymer-DFOS composite implants.

The process by which the alpha-hydroxy polyesters

biodegrade is principally by non-specific hydrolytic scission

11B3. Lactic acid, which is generated when PLA degrades,

becomes incorporated into the tricarboxylic acid cycle, and is
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excreted by the lungs as carbon dioxide and water [13. PGA, on

the other hand, is broken down hydrolwtically as well as by

nonspecific esterases and carboxypeptidases E323. The

resultant glycolic acid monomers are either excreted in the

urine or enter the tricarboxUlic acid cycle.

The rate at which the PLA:PGA implants degrade is

dependent on the following six factors:

1. Molar ratio of the constituents.

2. Porosity of the implants.

3. Uascularity of the recipient site.

4. Degree of crystallinity of the constituents.

5. Average molecular weight.

6. Stress at the recipient site.

In general, PLA:PGA copolymers with a greater molar ratio

of PLA tend to degrade more slowly than those with a greater

amount of PGA ES, 183. A 50:50 PLA:PGA molar ratio was chosen

for this composite because its half-life appeared to be

commensurate with normal fracture repair (four to six weeks)

[183.

The total surface area of the polymer available also

appears to influence the rate of degradation. Porous implants

will degrade more rapidly than dense glassy implants. During

fabrication of the implants used in this study, the control of

porosity was possible only to a limited extent. An overriding

concern was the Fabrication of a rigid implant which could be

carved and contoured at the time of surgery.

The degradation rate is also governed by the vascularity



Schmitz/Hollinger 13

of the recipient site. Implants placed in the mandible appear

to degrade more rapidly than implants placed in the calvaria

[14].

The degree of polymer crystallinity significantly effects

the rate of water sorption. Consequently, the L(-) form

degrades more slowly than the D,L form E16, 173. Additionally,

the alpha-hydroxy copolymers are less crystalline that their

constituent homopolymers and will degrade more slowly [18]. A

SO:SO poly(D,L-lactide-co-glycolide) implant was chosen because

of its previous history of predictable degradation in

endochondral wounds £113.

An important factor governing degradation is the concept

of average molecular weight which is often described in terms

of a polymer's inherent viscosity. Polymers that are highly

viscous (high average molecular weight) will undergo slower

biodegradation than those with a lower molecular weight and

lower viscosity E223. The presence of residual polymer at 24

weeks may be attributed to its viscosity in a relatively

avascular site (e.g. calvaria). Previous studies with this

same copolymer in the repair of mandibular discontinuity

defects showed complete biodegradation by 8-12 weeks [H&S in

press]. The flexing of the mandible which occurs in long-span

discontinuity defects may be a factor in accelerating polymer

degradation [13.

Mechanism of Action

Allogeneic decalcified freeze-dried bone is postulated to

provide a substratum For the differentiation of perivascular
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mesenchymal cells into chondrocytes and ultimately into

osteoblasts. This process is known as osteoinduction. Urist

has proposed that the inductor was a protein, specifically,

bone morphogenetic protein (BMP) [303. Reddi and coworkers, on

the other hand, have proposed surface charge and geometry as

well as inductor proteins as the putative factors in the

osteoinduction process [24, 2S, 27).

Following the heterotopic implantation of decalcified bone

matrix, a sequential development of endochondral bone is

initiated. Initially, the implant forms a plaque consisting of

a conglomerate of decalcified matrix, fibrin, and neutrophils.

Limited proteolysis is thought to cause the release of

chemotactic factors and other matrix proteins into the

surrounding milieu. The arrival of perivascular mesenchymal

cells by chemotaxis is Followed by their attachment to the bone

matrix. The linear array of a random copolymer such as SC:SO

PLA:PGA, which remotely resembles the linear array of the

collagen molecule, may play a crucial role in the anchorage

dependency of cells [28]. This anchorage dependency is

essential in the early phase of the osteoinduction cascade.

Cell attachment to bone matrix, thought to be promoted by

Fibronectin and related cell adhesive proteins, helps to bring

the putative inductor in contact with focal cell surface

receptors. The subsequent release of mitogenic Factors from

the matrix (hSGF) helps to promote growth and proliferation of

cells [31]. These cells differentiate into chondrocytes and

ultimately osteoblasts. Osteoblasts are subsequently seen to
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be anchored to the periphery of the decalcified bone particles

and to elaborate ostecid in a vectorial fashion.

Particulate cancellous marrow bone grafts presently are

considered the material of choice for maxillofacial bone

grafts. These grafts are used primarily to stabilize mobile

skeletal segments, augment skeletal contour, and to construct

new skeletal contour. However, the resorption of these grafts

has been estimated to be in the range of 30-70% of graft bulk

[19]. Eemineralized bone powders, on the other hand, do not

undergo resorption during bone induction and have complication

rates no greater than that of conventional bone grafts. While

impressive results have been documented clinically CS, 9, 15,

19, 20], Mulliken et al. [203 noted that "Bone powder fails to

provide immediate stability and structure needed in many types

of skeletal reconstruction and construction." In this regard,

PLA:PGA copolymers may be a velhicle to provide the immediate

stability and structure conducive to repair of the craniofacial

skeleton.
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TABLE 1. Trabecular Bany Volume of Composite

Implants Versus Controls

Composite Implants Controls

Six Field Volume (mm 3 /cm 3 ) 1728.42 957.15

Std. Bev. 161.44 869.15

n 26 26

p Ualue# <0.025

*Statistical data generated using an unpaired

Student's t-test

-- - -- i I i I n =i ' --m d i i "4
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LEGENDS

Figure 1. Scanning electron micrograph of the PLA:PGA/DFDB

composite. Particles of demineralized bone ) can be seen to

be invested within the copolymer matrix surrounded by open

voids up to 200 micrometers wideCoriginal magnification,X100.)

Figure 2a. Dried skull showing approximate size of the defect

in relation Lo the overall calvaria.

Figure 2b. Surgical site following removal of the calvarial

disc. Note the integrity of the dura and an intact superior

sagittal sinus (arrow).

Figure 3. Polymer composite implant at the time of insertion

demonstrating excellant adaptation to the bony wound margins.

Figure 4. 8 week control defect at retrieval. Fibrous repair

tissue is present as a thin membrane over the defect. The

wound margins are clearly demarcated (arrows).

Figure S. 4 week implant at retrieval. Implant is Found to

have swollen within the defect with a fibrous tissue capsule

present over the implant.

Figure 6. B week implant showing areas of osteosclerotic

rimming Carrows).

Figure 7. Radiograph of a 2q week control defect with isolated

bony islands present (arrows).

Figure 8. Radiograph of an 8 week implant showing trabecular

patterns present throughout the defect.

Figure S. Macrophotograph of a 24 week control defect. Note

fibrous connective bridge.

Figure 10a. Tessellation and rimming of osteoblasts in a 4 week
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specimen. Areas of amalgamated bone particles are present

Carrows)Cmodified Masson-Goldner trichrome stain; original

magnification,X6'.)

Figure lob. Anchorage of pre-osteoblasts to demineralized bone

matrix in a 4 week implant. An active osteoblast may be seen

anchored to the same particle(modified Masson-Goldner trichrome

stain;original magniFication,XlO0.)

Figure 11. Macrophotograph of a 20 week implant showing bony

trabeculae continuous across the defect.
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